If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)=-G^2+4G+1
We move all terms to the left:
(1/2)-(-G^2+4G+1)=0
We add all the numbers together, and all the variables
-(-G^2+4G+1)+(+1/2)=0
We get rid of parentheses
G^2-4G-1+1/2=0
We multiply all the terms by the denominator
G^2*2-4G*2+1-1*2=0
We add all the numbers together, and all the variables
G^2*2-4G*2-1=0
Wy multiply elements
2G^2-8G-1=0
a = 2; b = -8; c = -1;
Δ = b2-4ac
Δ = -82-4·2·(-1)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-6\sqrt{2}}{2*2}=\frac{8-6\sqrt{2}}{4} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+6\sqrt{2}}{2*2}=\frac{8+6\sqrt{2}}{4} $
| 1/9^a+1=81^a | | 8x+31+16x-9=180 | | 2/3x-4x=-15 | | 9/8p=27 | | 129+21+3x=180 | | 7(3^x)=189 | | 5^x+3=29 | | 7(7^x)=189 | | 2y=21/4=81/4 | | x*x*x+2x*x+4x-3=0 | | g-5+3=1 | | 3y-7=-8 | | y/3-8=7 | | 2x^2+4x-0=0 | | b+3b=16 | | (2x+25)+(2x-20)+x=180 | | -10=-2(w-4) | | Y+3=6(x—9) | | 15j+3j=-18 | | 2p^2=4 | | 3×+2y=19 | | (5x-3)-(4x-9)=0 | | 4(v+3)=20 | | 24x2+9x4+-2X6=0 | | √25=x | | x+1/2x=0 | | 14√x+15=71 | | 40=3w+16 | | 3x^2+10.25x-7=0 | | 4a-3a+5=20 | | 3x^2+41/4x-7=0 | | -s+-3s+-15=17 |